

Flow Solution™ FS 3700 Automated Chemistry Analyzer

Total Phosphorus by In-Line UV/Persulfate Digestion and Flow Injection Analysis (FIA)

Cartridge Part Number 330958CT Channel Part Number 330959

Scope and Application

This method is used for the determination of total phosphorus (TP) in drinking water, surface water, and domestic and industrial wastes, according to **Standard Methods 4500-P-I**. Additionally, this method enables total phosphorus analysis following in-line digestion according to ISO Method 15681-1.⁵

Method Performance

Range	0.010 mg/L - 10 mg/L P	
Rate	30 samples/hour	
Precision	≤ 2 %RSD at mid-range	
Method Detection Limit (MDL)	0.002 mg/L P	

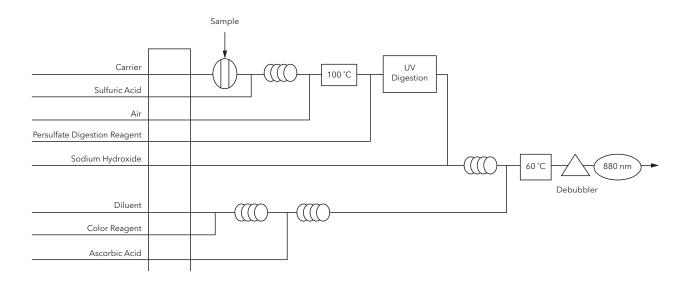
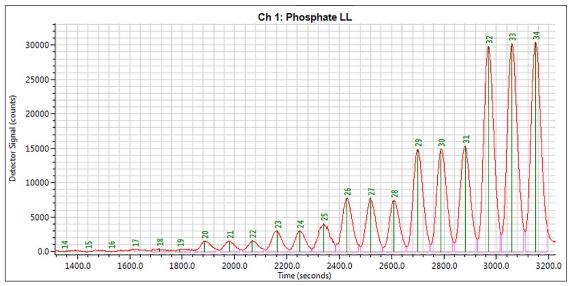


Figure 1. General Flow Diagram for Total Phosphorus by In-Line UV/Persulfate Digestion

Reagents and Calibrants

Chemical Name	CAS#	Chemical Formula	Part Number
Ammonium molybdate tetrahydrate	12054-85-2	(NH ₄) ₆ Mo ₇ O ₂₄ • 4H ₂ O	
Potassium antimonyl tartrate trihydrate	28300-74-5	K(SbO)C ₄ H ₄ O ₆ • ½H ₂ O	
Ascorbic acid	50-81-7	C ₆ H ₈ O ₆	
DOWFAX® 2A1	12626-49-2		328852
Hydrochloric acid, concentrated	7647-01-0	HCI	
Phenylphosphate disodium salt dihydrate	66788-08-3	C ₆ H ₅ OP(O)(ONa) ₂ • 2H ₂ O	
Potassium Persulfate	7727-21-1	K ₂ S ₂ O ₈	
Potassium phosphate monobasic	7778-77-0	KH ₂ PO ₄	
Sodium hydroxide	1310-73-2	NaOH	
Sodium pyrophosphate decahydrate	13472-36-1	Na ₄ O ₇ P ₂ • 10H ₂ O	
Sodium tripolyphosphate	7758-29-4	Na ₅ O ₁₀ P ₃	
Sulfuric acid, concentrated	7664-93-9	H ₂ SO ₄	
Trimethylphosphate	512-56-1	(CH ₃ O) ₃ P(O)	
Water, deionized, ASTM Type I or II		H ₂ O	


Summary of USEPA Method 353.21

Method

Organic phosphorus is converted to orthophosphate by in-line UV/persulfate digestion. Inorganic polyphosphates are converted to orthophosphate by in-line sulfuric acid digestion. Orthophosphate reacts with molybdenum(VI) and antimony(III) in an acid medium to form an antimony-phosphomolybdate complex. This complex is subsequently reduced with ascorbic acid to form a blue color, and the absorbance is measured at 880 nm.²

Interferences

- Filter turbid samples prior to analysis. Turbid samples may interfere with the photometric detector's ability to measure the true absorbance of the sample.
- Iron, copper, and other metals may interfere with the analysis by binding with orthophosphate and blocking the color formation reaction. The presence of less than 50 mg/L iron(III), less than 10 mg/L copper, or less than 10 mg/L silica does not interfere.²
- Samples with background absorbance at the analytical wavelength may interfere.

Figure 2. Total Phosphorus Calibration Series

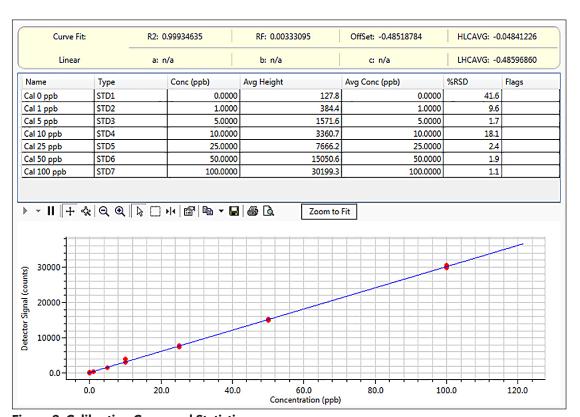


Figure 3. Calibration Curve and Statistics

OI Analytical® is registered trademark of Xylem Inc. or one of its subsidiaries.

151 Graham Road P.O. Box 9010 College Station, Texas 77842-9010

(979) 690-1711 (800) 653-1711 USA/Canada (979) 690-0440 Fax

www.oico.com

E-mail: oi-info@xyleminc.com